Publications 1. Han, Y., Sealey, L., Fu, Y., Delfing, B. M., Lockhart, C., Chilin, L., Tiwari, S., Jafri, M. S., Klimov, D. K., & Wu, Y. (2025) The decameric repeat (DR) of PSGL-1 functions as a basic antiviral unit in restricting HIV-1 infectivity. bioRxiv (posted), doi: 10.1101/2025.05.14.654117 2. Laracuente, X. E., Delfing, B. M., Luo, X., Olson, A., Jeffries, W., Bowers, S. R., Foreman, K. W., Lee, K.-H., Paige, M., Kehn-Hall, K., Lockhart, C., & Klimov, D. K. (2025) Applying absolute free energy perturbation molecular dynamics to diffusively binding ligands. J. Chem. Theory Comput. 21(8): 4286-4298, doi: 10.1021/acs.jctc.5c00121 3. He, S., Haikerwal, A., Tiwari, S., Dabbagh, D., Alam, M. Z., Yoon, J. L., Hetrick, B., Han, Y., Shan, L., Lockhart, C., & Wu, Y. (2025) CD34 serves as an intrinsic innate immune guardrail protecting stem cells from replicating retroviruses. bioRxiv (posted), doi: 10.1101/2025.03.15.643450 4. Xie, L., Lockhart, C., Bowers, S. R., Klimov, D. K., & Jafri, M. S. (2025) Structural analysis of amylin and amyloid β peptide signaling in Alzheimer’s disease. Biomolecules 15(1): 89, doi: 10.3390/biom15010089 5. Tiwari, S., Delfing, B. M., Han, Y., Lockhart, C., Haikerwal, A., Waheed, A. A., Freed, E. O., Jafri, M. S., Klimov, D. K., & Wu, Y. (2024) PSGL-1 excludes HIV Env from virion surface through spatial hindrance involving structural folding of the decameric repeats. bioRxiv (posted), doi: 10.1101/2024.12.28.630612v1 6. Goldberg, J. F., de Filippi, C. R., Lockhart, C., McNair, E. R., Sinha, S., Kong, H., Najjar, S. S., Lohmar, B. J., Tchoukina, I., Shah, K., Feller, E., Hsu, S., Rodrigo, M. E., Jang, M., Marboe, C. C., Berry, G. J., Valantine, H. A., Agbor-Enoh, A., & Shah, P. (2024) Proteomics in acute heart transplant rejection, on behalf of the GRAfT Investigators. Transplantation (in press), doi: 10.1097/TP.0000000000005258 7. Delfing, B. M., Laracuente, X. E., Luo, X., Olson, A., Jeffries, W., Foreman, K. W., Paige, M., Kehn-Hall, K., Lockhart, C., & Klimov, D. K. (2024) Binding of inhibitors to nuclear localization signal peptide from Venezuelan equine encephalitis virus capsid protein explored with all-atom replica exchange molecular dynamics. ACS Omega 9(38): 40259-40268, doi: 10.1021/acsomega.4c06981 8. Delfing, B. M., Laracuente, X. E., Jeffries, W., Luo, X., Olson, A., Foreman, K. W., Petruncio, G., Lee, K. H., Paige, M., Kehn-Hall, K., Lockhart, C., & Klimov, D. K. (2024) Competitive binding of viral nuclear localization signal peptide and inhibitor ligands to importin-α nuclear transport protein. J. Chem. Inf. Model. 64(13): 5262-5272, doi: 10.1021/acs.jcim.4c00626 9. Bowers, S. R., Lockhart, C., & Klimov, D. K. (2024) Binding and dimerization of PGLa peptides in anionic lipid bilayer studied by replica exchange molecular dynamics. Sci. Rep. 14: 4972, doi: 10.1038/s41598-024-55270-8 10. Bowers, S. R., Lockhart, C., & Klimov, D. K. (2023) Replica exchange with hybrid tempering efficiently samples PGLa peptide binding to anionic bilayer. J. Chem. Theory Comput. 19(18): 6532-6550, doi: 10.1021/acs.jctc.3c00787 11. Delfing, B. M., Laracuente, X. E., Olson, A., Foreman, K. W., Paige, M., Kehn-hall, K., Lockhart, C., & Klimov, D. K. (2023) Binding of viral nuclear localization signal peptides to importin-α nuclear transport protein. Biophys. J. 122(17): 3476-3488, doi: 10.1016/j.bpj.2023.07.024 12. Lockhart, C., Luo, X., Olson, A., Delfing, B. M., Laracuente, X. E., Foreman, K. W., Paige, M., Kehn-Hall, K., & Klimov, D. K. (2023) Can free energy perturbation simulations coupled with replica-exchange molecular dynamics study ligands with distributed binding sites? J. Chem. Inf. Model. 63(15): 4791-4802, doi: 10.1021/acs.jcim.3c00631 13. Delfing, B. M., Olson, A., Laracuente, X. E., Foreman, K. W., Paige, M., Kehn-Hall, K., Lockhart, C., & Klimov, D. K. (2023) Binding of Venezuelan equine encephalitis virus inhibitors to importin-α receptors explored with all-atom replica exchange molecular dynamics. J. Phys. Chem. B 127(14): 3175-3186, doi: 10.1021/acs.jpcb.3c00429 14. Khayat, E., Delfing, B. M., Laracuente, X. E., Olson, A., Lockhart, C., & Klimov, D. K. (2023) Lysine acetylation changes the mechanism of Aβ25-35 peptide binding and dimerization in the DMPC bilayer. ACS Chem. Neurosci. 14(3): 494-505, doi: 10.1021/acschemneuro.2c00722 15. Vergilio, J., Lockhart, C., & Klimov, D. K. (2022) De novo transmembrane aggregation of Aβ10-40 peptides in anionic lipid bilayer. J. Chem. Inf. Model. 62(23): 6228-6241, doi: 10.1021/acs.jcim.2c01192 16. Bowers, S. R., Klimov, D. K., & Lockhart, C. (2022) Mechanisms of binding of antimicrobial peptide PGLa to DMPC/DMPG membrane. J. Chem. Inf. Model. 62(6): 1525-1537, doi: 10.1021/acs.jcim.1c01518 17. Khayat, E., Lockhart, C., Delfing, B. M., Smith, A. K., & Klimov, D. K. (2021) Met35 oxidation hinders Aβ25-35 peptide aggregation within the dimyristoylphosphatidylcholine bilayer. ACS Chem. Neurosci. 12(17): 3225-3236, doi: 10.1021/acschemneuro.1c00407 18. Siwy, C. M., Delfing, B. M., Lockhart, C., Smith, A. K., & Klimov, D. K. (2021) Partitioning of Aβ peptide fragments into blood–brain barrier mimetic bilayer. J. Phys. Chem. B 125(10): 2658-2676, doi: 10.1021/acs.jpcb.0c11253 19. Lockhart, C., Smith, A. K., & Klimov, D. K. (2020) Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 60(4): 2282-2293, doi: 10.1021/acs.jcim.0c00096 20. Smith, A. K., Khayat, E., Lockhart, C., & Klimov, D. K. (2019) Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer? J. Chem. Inf. Model. 59(12): 5207-5217, doi: 10.1021/acs.jcim.9b00763 21. Lockhart, C., Smith, A. K., & Klimov, D. K. (2019) Methionine oxidation changes the mechanism of Aβ peptide binding to the DMPC bilayer. Sci. Rep. 9(5947): 1-12, doi: 10.1038/s41598-019-42304-9 22. Lockhart, C. & Klimov, D. K. (2017) Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 57(10): 2554-2565, doi: 10.1021/acs.jcim.7b00431 23. Siwy, C. M., Lockhart, C., & Klimov, D. K. (2017) Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent? PLoS Comput. Biol. 13(1): e1005314, doi: 10.1371/journal.pcbi.1005314 24. Smith, A. K., Lockhart, C., & Klimov, D. K. (2016) Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles? J. Chem. Theory Comput. 12(10): 5201-5214, doi: 10.1021/acs.jctc.6b00660 25. Lockhart, C. & Klimov, D. K. (2016) The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. Biochim. Biophys. Acta 1858(6): 1118-1128, doi: 10.1016/j.bbamem.2016.03.001 26. Lockhart, C. (2015) All-atom explicit-solvent replica-exchange molecular dynamics simulations of the Alzheimer's disease Aβ monomer. Dissertation. George Mason University. 27. Lockhart, C., O’Connor, J., Armentrout, S., & Klimov, D. K. (2015) Greedy replica exchange algorithm for heterogeneous computing grids. J. Mol. Model. 21(9): 243, doi: 10.1007/s00894-015-2763-5 28. Lockhart, C. & Klimov, D. K. (2015) Calcium enhances binding of Aβ monomer to DMPC bilayer. Biophys. J. 108(7): 1807-1818, doi: 10.1016/j.bpj.2015.03.001 29. Lockhart, C. & Klimov, D. K. (2014) Binding of Aβ peptide creates lipid density depression in DMPC bilayer. Biochim. Biophys. Acta 1838(10): 2678-2688, doi: 10.1016/j.bbamem.2014.07.010 30. Lockhart, C. & Klimov, D. K. (2014) Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: an isobaric-isothermal replica exchange molecular dynamics study. J. Phys. Chem. B 118(10): 2638-2648, doi: 10.1021/jp412153s 31. Lockhart, C. & Klimov, D. K. (2013) Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations. J. Phys. Chem. B 117(40): 12030-12038, doi: 10.1021/jp407705j 32. Lockhart, C. & Klimov, D. K. (2012) Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Biophys. J. 103(11): 2341-2351, doi: 10.1016/j.bpj.2012.10.003 33. Lockhart, C., Kim, S., & Klimov, D. K. (2012) Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands. J. Phys. Chem. B 116(43): 12922-12932, doi: 10.1021/jp306208n 34. Lockhart, C., Kim, S., Kumar, R., & Klimov, D. K. (2011) Does amino acid sequence determine the properties of Aβ dimer? J. Chem. Phys. 135: 14915, doi: 10.1063/1.3610427