Below you will find pages that utilize the taxonomy term “Aβ”
Lysine acetylation changes the mechanism of Aβ25-35 peptide binding and dimerization in the DMPC bilayer.
Khayat, E., Delfing, B. M., Laracuente, X., Olson, A., Lockhart, C., & Klimov, D. K. (2023) Lysine acetylation changes the mechanism of Aβ25-35 peptide binding and dimerization in the DMPC bilayer. ACS Chem. Neurosci. 14(3): 494-505, doi: 10.1021/acschemneuro.2c00722
De novo transmembrane aggregation of Aβ10-40 peptides in anionic lipid bilayer.
Vergilio, J., Lockhart, C., & Klimov, D. K. (2022) De novo transmembrane aggregation of Aβ10-40 peptides in anionic lipid bilayer. J. Chem. Inf. Model. 62(23): 6228-6241, doi: 10.1021/acs.jcim.2c01192
Met35 oxidation hinders Aβ25-35 peptide aggregation within the dimyristoylphosphatidylcholine bilayer.
Khayat, E., Lockhart, C., Delfing, B. M., Smith, A. K., & Klimov, D. K. (2021) Met35 oxidation hinders Aβ25-35 peptide aggregation within the dimyristoylphosphatidylcholine bilayer. ACS Chem. Neurosci. 12(17): 3225-3236, doi: 10.1021/acschemneuro.1c00407
Partitioning of Aβ peptide fragments into blood–brain barrier mimetic bilayer.
Siwy, C. M., Delfing, B. M., Lockhart, C., Smith, A. K., & Klimov, D. K. (2021) Partitioning of Aβ peptide fragments into blood–brain barrier mimetic bilayer. J. Phys. Chem. B 125(10): 2658-2676, doi: 10.1021/acs.jpcb.0c11253
Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer.
Lockhart, C., Smith, A. K., & Klimov, D. K. (2020) Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 60(40): 2282-2293, doi: 10.1021/acs.jcim.0c00096
Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer?
Smith, A. K., Khayat, E., Lockhart, C., & Klimov, D. K. (2019) Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer? J. Chem. Inf. Model. 59(12): 5207-5217, doi: 10.1021/acs.jcim.9b00763
Methionine oxidation changes the mechanism of Aβ peptide binding to the DMPC bilayer.
Lockhart, C., Smith, A. K., & Klimov, D. K. (2019) Methionine oxidation changes the mechanism of Aβ peptide binding to the DMPC bilayer. Sci. Rep. 9(5947): 1-12, doi: 10.1038/s41598-019-42304-9
Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer.
Lockhart, C. & Klimov, D. K. (2017) Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 57(10): 2554-2565, doi: 10.1021/acs.jcim.7b00431
Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent?
Ciwy, C. M., Lockhart, C., & Klimov, D. K. (2017) Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent? PLoS Comput. Biol. 13(1): e1005314, doi: 10.1371/journal.pcbi.1005314
Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles?
Smith, A. K., Lockhart, C., & Klimov, D. K. (2016) Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles? J. Chem. Theory Comput. 12(10): 5201-5214, doi: 10.1021/acs.jctc.6b00660
The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.
Lockhart, C. & Klimov, D. K. (2016) The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. Biochim. Biophys. Acta 1858(6): 1118-1128, doi: 10.1016/j.bbamem.2016.03.001
Calcium enhances binding of Aβ monomer to DMPC bilayer.
Lockhart, C. & Klimov, D. K. (2015) Calcium enhances binding of Aβ monomer to DMPC bilayer. Biophys. J. 108(7): 1807-1818, doi: 10.1016/j.bpj.2015.03.001
Binding of Aβ peptide creates lipid density depression in DMPC bilayer.
Lockhart, C. & Klimov, D. K. (2014) Binding of Aβ peptide creates lipid density depression in DMPC bilayer. Biochim. Biophys. Acta 1838(10): 2678-2688, doi: 10.1016/j.bbamem.2014.07.010
Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: an isobaric-isothermal replica exchange molecular dynamics study.
Lockhart, C. & Klimov, D. K. (2014) Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: An isobaric-isothermal replica exchange molecular dynamics study. J. Phys. Chem. B 118(10): 2638-2648, doi: 10.1021/jp412153s
Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations.
Lockhart, C. & Klimov, D. K. (2013) Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations. J. Phys. Chem. B 117(40): 12030-12038, doi: 10.1021/jp407705j
Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide.
Lockhart, C. & Klimov, D. K. (2012) Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Biophys. J. 103(11): 2341-2351, doi: 10.1016/j.bpj.2012.10.003
Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands.
Lockhart, C., Kim, S., & Klimov, D. K. (2012) Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands. J. Phys. Chem. B 116(43): 12922-12932, doi: 10.1021/jp306208n
Does amino acid sequence determine the properties of Aβ dimer?
Lockhart, C., Kim, S., Kumar, R., & Klimov, D. K. (2011) Does amino acid sequence determine the properties of Aβ dimer? J. Chem. Phys. 135: 035103, doi: 10.1063/1.3610427