Chris Lockhart
Research Assistant Professor
George Mason University
  • Research
  • CV
  • Publications
  • Courses

Below you will find pages that utilize the taxonomy term “Aβ”

Free energy perturbation simulations measure the change in binding affinity of the Aβ25–35 peptide to the zwitterionic bilayer caused by oxidation.

Luo, X., Khayat, E., Bowers, S. R., Delfing, B. M., Lockhart, C., & Klimov, D. K. (2025) Free energy perturbation simulations measure the change in binding affinity of the Aβ25–35 peptide to the zwitterionic bilayer caused by oxidation. J. Chem. Inf. Model. (accepted) >

Structural analysis of amylin and amyloid β peptide signaling in Alzheimer’s disease.

Xie, L., Lockhart, C., Bowers, S. R., Klimov, D. K., & Jafri, M. S. (2025) Structural analysis of amylin and amyloid β peptide signaling in Alzheimer’s disease. Biomolecules 15(1): 89, doi: 10.3390/biom15010089

Lysine acetylation changes the mechanism of Aβ25-35 peptide binding and dimerization in the DMPC bilayer.

Khayat, E., Delfing, B. M., Laracuente, X., Olson, A., Lockhart, C., & Klimov, D. K. (2023) Lysine acetylation changes the mechanism of Aβ25-35 peptide binding and dimerization in the DMPC bilayer. ACS Chem. Neurosci. 14(3): 494-505, doi: 10.1021/acschemneuro.2c00722

De novo transmembrane aggregation of Aβ10-40 peptides in anionic lipid bilayer.

Vergilio, J., Lockhart, C., & Klimov, D. K. (2022) De novo transmembrane aggregation of Aβ10-40 peptides in anionic lipid bilayer. J. Chem. Inf. Model. 62(23): 6228-6241, doi: 10.1021/acs.jcim.2c01192

Met35 oxidation hinders Aβ25-35 peptide aggregation within the dimyristoylphosphatidylcholine bilayer.

Khayat, E., Lockhart, C., Delfing, B. M., Smith, A. K., & Klimov, D. K. (2021) Met35 oxidation hinders Aβ25-35 peptide aggregation within the dimyristoylphosphatidylcholine bilayer. ACS Chem. Neurosci. 12(17): 3225-3236, doi: 10.1021/acschemneuro.1c00407

Partitioning of Aβ peptide fragments into blood–brain barrier mimetic bilayer.

Siwy, C. M., Delfing, B. M., Lockhart, C., Smith, A. K., & Klimov, D. K. (2021) Partitioning of Aβ peptide fragments into blood–brain barrier mimetic bilayer. J. Phys. Chem. B 125(10): 2658-2676, doi: 10.1021/acs.jpcb.0c11253

Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer.

Lockhart, C., Smith, A. K., & Klimov, D. K. (2020) Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 60(40): 2282-2293, doi: 10.1021/acs.jcim.0c00096

Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer?

Smith, A. K., Khayat, E., Lockhart, C., & Klimov, D. K. (2019) Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer? J. Chem. Inf. Model. 59(12): 5207-5217, doi: 10.1021/acs.jcim.9b00763

Methionine oxidation changes the mechanism of Aβ peptide binding to the DMPC bilayer.

Lockhart, C., Smith, A. K., & Klimov, D. K. (2019) Methionine oxidation changes the mechanism of Aβ peptide binding to the DMPC bilayer. Sci. Rep. 9(5947): 1-12, doi: 10.1038/s41598-019-42304-9

Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2017) Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 57(10): 2554-2565, doi: 10.1021/acs.jcim.7b00431

Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent?

Ciwy, C. M., Lockhart, C., & Klimov, D. K. (2017) Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent? PLoS Comput. Biol. 13(1): e1005314, doi: 10.1371/journal.pcbi.1005314

Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles?

Smith, A. K., Lockhart, C., & Klimov, D. K. (2016) Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles? J. Chem. Theory Comput. 12(10): 5201-5214, doi: 10.1021/acs.jctc.6b00660

The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.

Lockhart, C. & Klimov, D. K. (2016) The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. Biochim. Biophys. Acta 1858(6): 1118-1128, doi: 10.1016/j.bbamem.2016.03.001

Calcium enhances binding of Aβ monomer to DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2015) Calcium enhances binding of Aβ monomer to DMPC bilayer. Biophys. J. 108(7): 1807-1818, doi: 10.1016/j.bpj.2015.03.001

Binding of Aβ peptide creates lipid density depression in DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2014) Binding of Aβ peptide creates lipid density depression in DMPC bilayer. Biochim. Biophys. Acta 1838(10): 2678-2688, doi: 10.1016/j.bbamem.2014.07.010

Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: an isobaric-isothermal replica exchange molecular dynamics study.

Lockhart, C. & Klimov, D. K. (2014) Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: An isobaric-isothermal replica exchange molecular dynamics study. J. Phys. Chem. B 118(10): 2638-2648, doi: 10.1021/jp412153s

Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations.

Lockhart, C. & Klimov, D. K. (2013) Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations. J. Phys. Chem. B 117(40): 12030-12038, doi: 10.1021/jp407705j

Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide.

Lockhart, C. & Klimov, D. K. (2012) Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Biophys. J. 103(11): 2341-2351, doi: 10.1016/j.bpj.2012.10.003

Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands.

Lockhart, C., Kim, S., & Klimov, D. K. (2012) Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands. J. Phys. Chem. B 116(43): 12922-12932, doi: 10.1021/jp306208n

Does amino acid sequence determine the properties of Aβ dimer?

Lockhart, C., Kim, S., Kumar, R., & Klimov, D. K. (2011) Does amino acid sequence determine the properties of Aβ dimer? J. Chem. Phys. 135: 035103, doi: 10.1063/1.3610427