Chris Lockhart
Research Assistant Professor
George Mason University
  • Research
  • CV
  • Publications
  • Courses

Below you will find pages that utilize the taxonomy term “REMD”

Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer.

Lockhart, C., Smith, A. K., & Klimov, D. K. (2020) Three popular force fields predict consensus mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 60(40): 2282-2293, doi: 10.1021/acs.jcim.0c00096

Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer?

Smith, A. K., Khayat, E., Lockhart, C., & Klimov, D. K. (2019) Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer? J. Chem. Inf. Model. 59(12): 5207-5217, doi: 10.1021/acs.jcim.9b00763

Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2017) Cholesterol changes the mechanism of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model. 57(10): 2554-2565, doi: 10.1021/acs.jcim.7b00431

Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent?

Ciwy, C. M., Lockhart, C., & Klimov, D. K. (2017) Is the conformational ensemble of Alzheimer's Aβ10-40 peptide force field dependent? PLoS Comput. Biol. 13(1): e1005314, doi: 10.1371/journal.pcbi.1005314

Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles?

Smith, A. K., Lockhart, C., & Klimov, D. K. (2016) Does replica exchange with solute tempering efficiently sample Aβ peptide conformational ensembles? J. Chem. Theory Comput. 12(10): 5201-5214, doi: 10.1021/acs.jctc.6b00660

The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.

Lockhart, C. & Klimov, D. K. (2016) The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. Biochim. Biophys. Acta 1858(6): 1118-1128, doi: 10.1016/j.bbamem.2016.03.001

Greedy replica exchange algorithm for heterogeneous computing grids.

Lockhart, C., O'Connor, J., Armentrout, S., & Klimov, D. K. (2015) Greedy replica exchange algorithm for heterogeneous computing grids. J. Mol. Model. 21(9): 243, doi: 10.1007/s00894-015-2763-5

Calcium enhances binding of Aβ monomer to DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2015) Calcium enhances binding of Aβ monomer to DMPC bilayer. Biophys. J. 108(7): 1807-1818, doi: 10.1016/j.bpj.2015.03.001

Binding of Aβ peptide creates lipid density depression in DMPC bilayer.

Lockhart, C. & Klimov, D. K. (2014) Binding of Aβ peptide creates lipid density depression in DMPC bilayer. Biochim. Biophys. Acta 1838(10): 2678-2688, doi: 10.1016/j.bbamem.2014.07.010

Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: an isobaric-isothermal replica exchange molecular dynamics study.

Lockhart, C. & Klimov, D. K. (2014) Alzheimer's Aβ10-40 peptide binds and penetrates DMPC bilayer: An isobaric-isothermal replica exchange molecular dynamics study. J. Phys. Chem. B 118(10): 2638-2648, doi: 10.1021/jp412153s

Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations.

Lockhart, C. & Klimov, D. K. (2013) Revealing hidden helix propensity in Aβ peptide by molecular dynamics simulations. J. Phys. Chem. B 117(40): 12030-12038, doi: 10.1021/jp407705j

Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide.

Lockhart, C. & Klimov, D. K. (2012) Molecular interactions of Alzheimer's biomarker FDDNP with Aβ peptide. Biophys. J. 103(11): 2341-2351, doi: 10.1016/j.bpj.2012.10.003

Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands.

Lockhart, C., Kim, S., & Klimov, D. K. (2012) Explicit solvent molecular dynamics simulations of Aβ peptide interacting with ibuprofen ligands. J. Phys. Chem. B 116(43): 12922-12932, doi: 10.1021/jp306208n

Does amino acid sequence determine the properties of Aβ dimer?

Lockhart, C., Kim, S., Kumar, R., & Klimov, D. K. (2011) Does amino acid sequence determine the properties of Aβ dimer? J. Chem. Phys. 135: 035103, doi: 10.1063/1.3610427